In this paper we study the linearized inverse problem associated with imaging of reflection seismic data. We introduce an inverse scattering transform derived from reverse time migration (RTM). In the process, the explicit evaluation of the so-called normal operator is avoided, while other differential and pseudodifferential operator factors are introduced. We prove that, under certain conditions, the transform yields a partial inverse, and support this with numerical simulations. In addition, we explain the recently discussed 'low-frequency artifacts' in RTM, which are naturally removed by the new method.
RésuméDans cet article, on étudie le problème inverse linéarisé associé à l'imagerie sismique par réflexion. On propose une transformation de diffusion inverse dérivée de la migration à temps inverse. On démontre que, sous certaines conditions, cette transformation donne un inverse microlocal partiel. De plus, le résultat est verifié par des simulations numériques.