Laser displacement sensors are widely used in the aviation industry for the purpose of surface normal measurements. The measurement of a surface normal depends on prior knowledge of the poses and positions of the sensors, which are obtained through calibration. This paper introduces a new parameter to the traditional calibration procedure, to reduce the calibration error, and explores the factors affecting calibration using the Monte Carlo method. In the experiment, the normal measurement error of the probe consisted of four sensors after calibration was less than 0.1∘, which satisfied the established requirements. This paper indicates the boundary conditions for a successful calibration and validates the proposed method, which provides a new method for the pose and position calibration of laser displacement sensors and other similar sensors.