In this paper, a generalized predictive control (GPC)‐based two degrees of freedom (2 DOF) proportional integral (PI) controller is proposed for the speed servo system of a permanent magnet synchronous linear motor (PMSLM). In this new approach, based on a dynamic model of a servo system, a simplified and high‐performance GPC supplies a 2 DOF PI controller with suitable control parameters, according to the varied operating conditions. In previous studies, GPC‐based proportional integral derivative (PID) controllers have been designed using a step‐type or ramp‐type reference input. In our work, however, the speed command for PMSLM usually is required to be a trapezium‐type signal because of the limited travel range. Hence, control performance of a speed servo system using a GPC‐based 2 DOF PI controller is enhanced for tracking a trapezium‐type command. The validity and usefulness of the proposed controller are verified through simulation and experiments.