Failure analysis of the blades of a horizontal axis hydrokinetic turbine of 1 kW is presented. Analysis consisted of the determination of the pressure on the blade surface using Computational Fluid Dynamics, and the calculation of the stress distribution in the blade due to hydrodynamic, inertial and gravitational loads using the finite element methods. The results indicate that the blade undergoes significant vibration and deflection during the operation, and the centrifugal and hydrodynamic loads considerably affect the structural response of the blade; however, the stresses produced in all of the analysed models did not exceed the safe working stresses of the materials used to manufacture the blade. Modal analysis was conducted to calculate first significant natural frequencies. Results were studied in depth against operating frequency of the turbine. After carrying out the modal analysis, harmonic analysis was also done to see the response of the turbine under dynamic loading. It was observed that the turbine is safe in its entire operating range as far as phenomenon of resonance is concerned. Additionally, it was observed that maximum harmonic response of the turbine on the application of dynamic loading is far lesser than its failure limit within the specified operating range.