Improving productivity in industrial farming is crucial for precision agriculture, particularly in the broiler breeding sector, where swift identification of dead broilers is vital for preventing disease outbreaks and minimizing financial losses. Traditionally, the detection process relies on manual identification by farmers, which is both labor-intensive and inefficient. Recent advances in computer vision and deep learning have resulted in promising automatic dead broiler detection systems. In this study, we present an automatic detection and segmentation system for dead broilers that uses transformer-based dual-stream networks. The proposed dual-stream method comprises two streams that reflect the segmentation and detection networks. In our approach, the detection network supplies location-based features of dead broilers to the segmentation network, aiding in the prevention of live broiler mis-segmentation. This integration allows for more accurate identification and segmentation of dead broilers within the farm environment. Additionally, we utilized the self-attention mechanism of the transformer to uncover high-level relationships among the features, thereby enhancing the overall accuracy and robustness. Experiments indicated that the proposed approach achieved an average IoU of 88% on the test set, indicating its strong detection capabilities and precise segmentation of dead broilers.