Traffic control systems for an urban traffic management play an important role in reducing congestion and the negative effects of social and economic aspects. In this paper, the coordinated control method for an arterial road network is proposed. The proposed method is based on fuzzy logic and Webster optimum cycle formula. It is a cyclic method, which means that all-feasible phases at the intersection are get at least a minimum green signal during each cycle. These minimum green times can be used for pedestrian crossing purposes. This method eliminates the starvation that occurs at minor roads due to the non-cyclic strategy. The proposed method is investigated in both coordinated and isolated circumstances. It is compared with non-optimized fixed time control and the cyclic backpressure strategy suggested in the literature. The cyclic backpressure strategy was selected due to its similarity with our proposed method. Based on the obtained results, the adaptive fuzzy logic and Webster based coordinated method outperforms the other methods in terms of the average of waiting time, travel time, travel speed, and queue lengths. In addition, the result achieved from a coordinated situation slightly superior that obtained from isolated situation, which means the proposed method provides good performance both in an isolated and coordinated situations.