A gas dynamic trap (GDT) is a version of a magnetic mirror whose characteristic features are a long mirror-to-mirror distance, which exceeds the effective mean free path of ion scattering into a loss cone, a large mirror ratio (R ∼ 100) and axial symmetry. Under these conditions, the plasma confined in a GDT is isotropic and Maxwellian. The rate at which it is lost out of the ends is governed by a set of simple gas-dynamic equations, hence the name of the device. Plasma magnetohydrodynamic stability is achieved through a plasma outflow through the end mirrors into regions, where the magnetic-field lines' curvature is favorable for this stability. A high flux volumetric neutron source based on a GDT is proposed, which benefits from the high β achievable in magnetic mirrors. Axial symmetry also makes the GDT neutron source more maintainable and reliable, and technically simpler. This review discusses the results of a conceptual design of the GDT-based neutron source for fusion materials development and fission-fusion hybrids. The main physics issues related to plasma confinement and heating in a GDT are addressed by the experiments performed with the GDT device in Novosibirsk. The review concludes by updating the experimental results obtained, a discussion about the limiting factors in the current experiments and a brief description of the design of a future experimental device for more comprehensive modeling of the GDT-based neutron source.