Grid convergence studies for subsonic and transonic flows over airfoils are presented in order to compare the accuracy of several spatial discretizations for the compressible Navier-Stokes equations. The discretizations include the following schemes for the inviscid fluxes: (1) second-order-accurate centered differences with third-order matrix numerical dissipation, (2) the second-order convective upstream split pressure scheme (CUSP), (3) third-order upwind-biased differencing with Roe's flux-difference splitting, and (4) fourth-order centered differences with third-order matrix numerical dissipation. The first three are combined with second-order differencing for the grid metrics and viscous terms. The fourth discretization uses fourthorder differencing for the grid metrics and viscous terms, as well as higher-order approximations near boundaries and for the numerical integration used to calculate forces and moments. The results indicate that the discretization using higher-order approximations for all terms is substantially more accurate than the others, producing less than two percent numerical error in lift and drag components on grids with less than 13,000 nodes for subsonic cases and less than 18,000 nodes for transonic cases. Since the cost per grid node of all of the discretizations studied is comparable, the higher-order discretization produces solutions of a given accuracy much more efficiently than the others.