Let
$\unicode[STIX]{x1D6FD}>1$
be a real number and define the
$\unicode[STIX]{x1D6FD}$
-transformation on
$[0,1]$
by
$T_{\unicode[STIX]{x1D6FD}}:x\mapsto \unicode[STIX]{x1D6FD}x\hspace{0.6em}({\rm mod}\hspace{0.2em}1)$
. Let
$f:[0,1]\rightarrow [0,1]$
and
$g:[0,1]\rightarrow [0,1]$
be two Lipschitz functions. The main result of the paper is the determination of the Hausdorff dimension of the set
$$\begin{eqnarray}W(f,g,\unicode[STIX]{x1D70F}_{1},\unicode[STIX]{x1D70F}_{2})=\big\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-f(x)|<\unicode[STIX]{x1D6FD}^{-n\unicode[STIX]{x1D70F}_{1}(x)},|T_{\unicode[STIX]{x1D6FD}}^{n}y-g(y)|<\unicode[STIX]{x1D6FD}^{-n\unicode[STIX]{x1D70F}_{2}(y)}~\text{for infinitely many}~n\in \mathbb{N}\big\},\end{eqnarray}$$
where
$\unicode[STIX]{x1D70F}_{1}$
,
$\unicode[STIX]{x1D70F}_{2}$
are two positive continuous functions with
$\unicode[STIX]{x1D70F}_{1}(x)\leq \unicode[STIX]{x1D70F}_{2}(y)$
for all
$x,y\in [0,1]$
.