Vigor identification in sweet corn seeds is important for seed germination, crop yield, and quality. In this study, hyperspectral image (HSI) technology integrated with germination tests was applied for feature association analysis and germination performance prediction of sweet corn seeds. In this study, 89 sweet corn seeds (73 for training and the other 16 for testing) were studied and hyperspectral imaging at the spectral range of 400–1000 nm was applied as a nondestructive and accurate technique to identify seed vigor. The root length and seedling length which represent the seed vigor were measured, and principal component regression (PCR), partial least squares (PLS), and kernel principal component regression (KPCR) were used to establish the regression relationship between the hyperspectral feature of seeds and the germination results. Specifically, the relevant characteristic band associated with seed vigor based on the highest correlation coefficient (HCC) was constructed for optimal wavelength selection. The hyperspectral data features were selected by genetic algorithm (GA), successive projections algorithm (SPA), and HCC. The results indicated that the hyperspectral data features obtained based on the HCC method have better prediction results on the seedling length and root length than SPA and GA. By comparing the regression results of KPCR, PCR, and PLS, it can be concluded that the hyperspectral method can predict the root length with a correlation coefficient of 0.7805. The prediction results of different feature selection and regression algorithms for the seedling length were up to 0.6074. The results indicated that, based on hyperspectral technology, the prediction of seedling root length was better than that of seed length.