Abstract:In order to describe the phenomenon of intermittency in wall turbulence and, more particularly, the behaviour of moments exponents ζP with the order p and distance to the wall, we developed a new geometrical framework called "entropic-skins geometry" based on the notion of scale-entropy which is here applied to an experimental database of boundary layer flows. Each moment has its own spatial multi-scale support Ωp ("skin"). The model assumes the existence of a hierarchy of multi-scale sets Ωp ranged from the "bulk" to the "crest". The crest noted characterizes the geometrical support where the most intermittent (the highest) fluctuations in energy dissipation occur; the bulk is the geometrical support for the whole range of fluctuations. The model assumes then the existence of a dynamical flux through the hierarchy of skins. The specific case where skins display a fractal structure is investigated. Bulk fractal dimension f Δ and crest dimension ∞ Δ are linked by a scale-entropy flux defining a reversibility efficiency ( )/( )