In the field of computational biology, electronic modeling of bio-cellular processes is in vogue for about a couple of decades. Fast, efficient and scalable electronic mimetics of recurrently found bio-chemical reactions are expected to provide better electronic circuit simulators that can also be used as bio-sensors or implantable biodevices at cellular levels. This paper presents some possible electronic circuit equivalents to model dynamics of one such bio-chemical reaction commonly involved in many bio-cellular processes, specifically pathways in living cells, known as the Hill process. The distinguishing feature of this process is cooperativity which has been modeled in silicon substrate using a pair of transistors, one transistor driving current in the other the same way ligand binding to one receptor site controls the binding affinity of the other receptor sites. Two possible circuits have been proposed and compared to electronically model cooperativity of a Hill reaction. The main idea is to exploit the natural analogies found between structures and processes of a bio-cell and electronic transistor mechanics, to efficiently model fundamental bio-chemical reactions found recurring in bio-processes. These circuits can then be combined and rearranged quickly to form larger, more complex bio-networks, thus mitigating the intricacies involved in modeling of such systems.