Metabolites are important biomarkers in human body fluids, conveying direct information of cellular activities and physical conditions. Metabolite detection has long been a research hotspot in the field of biology and medicine. Surface-enhanced Raman spectroscopy (SERS), based on the molecular “fingerprint” of Raman spectrum and the enormous signal enhancement (down to a single-molecule level) by plasmonic nanomaterials, has proven to be a novel and powerful tool for metabolite detection. SERS provides favorable properties such as ultra-sensitive, label-free, rapid, specific, and non-destructive detection processes. In this review, we summarized the progress in recent 10 years on SERS-based sensing of endogenous metabolites at the cellular level, in tissues, and in biofluids, as well as drug metabolites in biofluids. We made detailed discussions on the challenges and optimization methods of SERS technique in metabolite detection. The combination of SERS with modern biomedical technology were also anticipated.