The paper presents a method to control probabilistic diffusion in motion planning algorithms. The principle of the method is to use on line the results of a diffusion algorithm to describe the free space in which the planning takes place. Given that description, it makes the diffusion go faster in favoured directions. That way, if the free space appears as a small volume around a submanifold of a highly dimensioned configuration space, the method overcomes the usual limitations of diffusion algorithms and finds a solution quickly. The presented method is theoretically analyzed and experimentally compared to known motion planning algorithms.1 Problem statement, related work and contribution
General FrameworkMotion planning problems have been intensively studied in the last decades, with applications in many diverse areas, such as robot locomotion, part disassembly problems, digital actors in computer animation, or even protein folding and drug design. For comprehensive overviews of motion planning problems and methods, one can refer to [10], [1] and [13].In the past fifteen years, two kinds of configuration space (CS) search paradigms have been investigated with success.• The sampling approach, first introduced in [8] as probabilistic roadmaps (PRM), consists in computing a graph, or a roadmap, whose vertices are collision free configurations, sampled at random in the free space and whose edges reflect the existence of a collision free elementary path between two configurations. It aims at capturing the topology of the free space in a learning phase in order to handle multiple queries in a solving phase. • The diffusion approach, introduced in both [5] and [9], which includes RRT planners, consists in solving single queries by growing a tree rooted at the start configuration towards the goal configuration to be reached. † This work is partly supported by the French ANR-RNTL project PerfRV2.
Sébastien Dalibard and Jean-Paul LaumondThese methods have been proven to be efficient and suitable for a large class of motion planning problems. Work has been done to analyze and validate theoretically these algorithms. Probabilistic completeness has been studied and proved for RRT [9], as well as for PRM [7].
Narrow PassagesIn some environments, however, passing through so-called narrow passages is a difficult task for probabilistic motion planners. A lot of work has been done to evaluate this difficulty, as well as to overcome it.The formalism of expensive spaces was first presented in [5]. It quantifies the complexity of a configuration space from a randomized planning point of view. This formalism helps understanding what makes a motion planning problem difficult. Narrow passages and the configuration space dimension are identified as the main sources of complexity.It is believed that probabilistic planning algorithms have an exponential complexity with respect to the dimension of the configuration space, as the number of nodes needed to describe the free space has a combinatorial explosion. The presence of nar...