Triaxial compression experiments were conducted on a quartz sandstone at effective pressures up to 175 MPa and temperatures up to 900°C. Our experiments show a transition from brittle faulting to semibrittle faulting with an increase in both pressure and temperature. The yield behavior of samples deformed in the semibrittle regime follows a compactant elliptical cap at low strain, but evolves to a dilatant MohrâCoulomb relationship with continued compaction. Optical microscopy indicates that semibrittle deformation involves cataclastic flow through shearâenhanced compaction and grain crushing; however, transmission electron microscopy shows evidence for dislocation glide in limited portions of samples. To constrain the relative contribution of brittle and crystal plastic mechanisms, we estimate the partitioning of the inelastic work into the dissipation energy for microcracking, intergranular frictional slip, and dislocation glide. We conclude that semibrittle deformation is accommodated primarily by cataclastic mechanisms, with only a limited contribution from crystal plasticity. Mechanical data, acoustic emission records, and analysis of surface energy all indicate the activation of subcritical cracking at elevated temperature. Hence, we infer that the enhancement of subcritical cracking is responsible for the transition to semibrittle flow through promoting distributed grainâscale fractures and millimeterâscale shear bands. Subcritical cracking promotes the nucleation of microfractures at lower stresses, and the resulting decrease in flow stress retards the propagation of transgranular microfractures. Our study illuminates the important role of temperature on the micromechanics of the transition from brittle faulting to cataclastic flow in the Earth.