Focussing on three basic blade modes the effect of the flow's influence on the forced response of a mistuned HPCblisk is studied using a surrogate lumped mass model called equivalent blisk model (EBM). Both measured and intentionally allowed mistuning is considered to find out in principle if the flow contributes to a slowdown of blade displacements with increasing mistuning. In a first step the mechanical properties of the EBM are adjusted to a finite element model and known mistuning distributions given in terms of blade frequencies and damping. Taking into account the flow structure interaction CFD-computations are carried out in order to derive aerodynamic influence coefficients (AIC) which are used to describe the aerodynamic forces coming along with the motion of each blade in the flow. These aerodynamic forces can be included directly in the EBM equations of motion or alternatively be used to calculate aeroelastic eigenvalues from which additional equivalent aerodynamic elements representing the co-vibrating air mass as well as aerodynamic stiffening and damping effects are derived. Both kinds of EBM are applied to study the forced response at least in a qualitative manner aiming to demonstrate some basic effects at low computing time.
NOMENCLATURE1F first blade flap mode 1T first blade torsion mode 1TL first blade tramline mode AIC aerodynamic influence coefficients CFD computational fluid dynamics DFT discrete fourier transform DOF degree of freedom E3E Engine 3E (technology program)