Disagreement-based co-trainingTanha, J.; van Someren, M.W.; Afsarmanesh, H.
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Abstract-Recently, Semi-Supervised learning algorithms such as co-training are used in many domains. In co-training, two classifiers based on different subsets of the features or on different learning algorithms are trained in parallel and unlabeled data that are classified differently by the classifiers but for which one classifier has large confidence are labeled and used as training data for the other. In this paper, a new form of co-training, called Ensemble-Co-Training, is proposed that uses an ensemble of different learning algorithms. Based on a theorem by Angluin and Laird that relates noise in the data to the error of hypotheses learned from these data, we propose a criterion for finding a subset of high-confidence predictions and error rate for a classifier in each iteration of the training process. Experiments show that the new method in almost all domains gives better results than the state-of-the-art methods.