“…As the results shows, the finding of this study, using the most used machine learning methods, the full data set, and comparing the classifiers with respect to binary and hardware criteria, can be a reference study for further studies in IDS or similar large datasets. (Zeng et al, 2011;Gowrison et al, 2013) BayesNet (Nguyen and Choi, 2008) MLP (Gowrison et al, 2013;Sheikhan and Sharifi Rad, 2013) OneR (Nguyen and Choi, 2008) Decision Tree (Nguyen and Choi, 2008;Sindhu et al, 2012;Guo et al, 2014;Khor et al, 2012;Lin et al, 2012;Benferhat et al, 2013) Decision Table (Nguyen and Choi, 2008) RBF Naive Bayes (Guo et al, 2014;Nguyen and Choi, 2008;Zeng et al, 2011;Benferhat et al, 2013) Decision Tree (Nguyen and Choi, 2008;Sindhu et al, 2012;Guo et al, 2014;Khor et al, 2012;Lin et al, 2012;Benferhat et al, 2013) SVM (Chung and Wahid, 2012;Lin et al, 2012;Guo et al, 2014) Random Forest (Zhang et al, 2008;Sindhu et al, 2012) Logistic Regression (Nguyen and Choi, 2008) NA 0.9999 ↑ 0.9470 ↑ J48 0.9885 (Lin et al, 2012) 0.9401 (Benferhat et al, 2013) 1.0000 ↑ 0.9349 ↓ Logistic Regression NA NA 0.9948 0.8152 MLP 0.9390…”