“…Utilizing AI algorithms with salivary biomarkers to generate models that can be validated and applied potentially in clinical practice is more common than its use for biomarker discovery (Arias-Bujanda et al, 2020;Banavar et al, 2021;Bostanci et al, 2018;Carnielli et al, 2018;da Costa et al, 2022;de Dumast et al, 2018;Eriksson et al, 2022;Gomez Hernandez et al, 2021;Grier et al, 2021;Kim et al, 2021;Kistenev et al, 2018;Koller et al, 2021;Koopaie et al, 2021;Kouznetsova et al, 2021;Lee et al, 2021;Liu, Tong, et al, 2021;Lyashenko et al, 2020;Monedeiro et al, 2021;Nakano et al, 2014Nakano et al, , 2018Pang et al, 2021;Schulte et al, 2020;Shoukri et al, 2019;Song et al, 2020;Sonis et al, 2013;Tamaki et al, 2009;Winck et al, 2015;Wu et al, 2021;Zhang et al, 2021;Zhou et al, 2021;Zlotogorski-Hurvitz et al, 2019) AI-based biomarker platforms constructed during biomarker discovery may be executed for biomarker validation on the premise that each additional saliva sample would be subjected to similar large-scale analysis and used as input for the same models (Adeoye, Wan, et al, 2022). While this may not be cost-effective, feasible, or encourage validation, promising biomarkers selected using conventional statistical approaches or AI-based exploratory analysis (in biomarker discovery) may be used to develop new models for biomarker validation and potential clinical application (Koopaie et al, 2021;Tamaki et al, 2009).…”