2018 IEEE 7th International Conference on Cloud Networking (CloudNet) 2018
DOI: 10.1109/cloudnet.2018.8549534
|View full text |Cite
|
Sign up to set email alerts
|

A Distributed Algorithm for Multi-Stage Computation Offloading

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 10 publications
0
2
0
Order By: Relevance
“…(Aberer et al 2006;Aygalinc et al 2016;Becker et al 2019;Caporuscio et al 2010;Escoffier et al 2014;Handte et al 2012). Most of these approaches concentrate on either networked embedded devices (Becker et al 2004(Becker et al , 2003Eisenhauer et al 2010;Kostelník et al 2011) or the Cloud (Brinkschulte et al 2019, Guinard et al 2010, Mahn et al 2018, Naber et al 2019, thus not fulfilling our first requirement, to provide a runtime environment for all device classes. This has changed only recently.…”
Section: Related Workmentioning
confidence: 99%
“…(Aberer et al 2006;Aygalinc et al 2016;Becker et al 2019;Caporuscio et al 2010;Escoffier et al 2014;Handte et al 2012). Most of these approaches concentrate on either networked embedded devices (Becker et al 2004(Becker et al , 2003Eisenhauer et al 2010;Kostelník et al 2011) or the Cloud (Brinkschulte et al 2019, Guinard et al 2010, Mahn et al 2018, Naber et al 2019, thus not fulfilling our first requirement, to provide a runtime environment for all device classes. This has changed only recently.…”
Section: Related Workmentioning
confidence: 99%
“…In this case, a continuous state space is defined and a deep deterministic policy gradient (DDPG) agent is adopted to handle the high-dimensional action space. Moreover, in [15], an energy minimization offloading problem with a time constraint is tackled. A game theory approach is used to decompose the problem into two sub-problems such that first the access point (AP) receives the offloading decisions from users, and then it optimizes the communication and computation resources (e.g., channel access time and computation power allocated to each user).…”
Section: B Related Workmentioning
confidence: 99%