2021
DOI: 10.48550/arxiv.2110.12415
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Distributed Deep Reinforcement Learning Technique for Application Placement in Edge and Fog Computing Environments

Abstract: Fog/Edge computing is a novel computing paradigm supporting resource-constrained Internet of Things (IoT) devices by placement of their tasks on edge and/or cloud servers. Recently, several Deep Reinforcement Learning (DRL)-based placement techniques have been proposed in fog/edge computing environments, which are only suitable for centralized setups. The training of well-performed DRL agents requires manifold training data while obtaining training data is costly. Hence, these centralized DRL-based techniques … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?