2008
DOI: 10.1145/1481506.1481515
|View full text |Cite
|
Sign up to set email alerts
|

A distributed evolutionary method to design scheduling policies for volunteer computing

Abstract: Volunteer Computing (VC) is a paradigm that takes advantage of idle cycles from computing resources donated by volunteers and connected through the Internet to compute large-scale, loosely coupled simulations. A big challenge in VC projects is the scheduling of work-units across heterogeneous, volatile, and error-prone computers. The design of efficient scheduling policies for VC projects involves subjective and time-demanding tuning that is driven by knowledge of the project designer. VC projects are in need … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
16
0
2

Year Published

2008
2008
2022
2022

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(18 citation statements)
references
References 19 publications
0
16
0
2
Order By: Relevance
“…Other research related to VC scheduling includes using evolutionary algorithms to develop scheduling algorithms [25] and using P2P to perform load balancing in VC systems [26]. A possible future field of research is to use genetic algorithms in predicting worker availability for low latency batch computing, though other methods [13,17] appear to already be very successful and more applicable to low latency computing.…”
Section: Related Workmentioning
confidence: 99%
“…Other research related to VC scheduling includes using evolutionary algorithms to develop scheduling algorithms [25] and using P2P to perform load balancing in VC systems [26]. A possible future field of research is to use genetic algorithms in predicting worker availability for low latency batch computing, though other methods [13,17] appear to already be very successful and more applicable to low latency computing.…”
Section: Related Workmentioning
confidence: 99%
“…Applied to scheduling (e.g., [18,19,41,55]), they simulate the Darwinian evolution in a population of schedules to produce the best ones. Some authors use genetic algorithms to develop optimal scheduling policies.…”
Section: Black Box Schedule Generatorsmentioning
confidence: 99%
“…Алгоритмы разделены на три группы: «наивные», не учитывающие историю работы; основанные на информации о вычислительных узлах (включая сбор статистики работы); и адаптивные -изменяющие параметры работы «на ле-ту». Несколько алгоритмов каждой группы обсуждаются детально, включая предложенный авторами генетический адаптивный алгоритм, схожий с представленным в работе [26] (более подробное описание этого алгоритма представлено в следующем разделе данной статьи). Также обзор дополнен детальным описанием систем имитационного моделирования BOINC SimBA, SimBOINC и EmBOINC.…”
Section: обзорные статьиunclassified
“…В работе [26] предложен генетический алгоритм для нахождения оптимальной политики планирования заданий. Роль индивидуумов играют наборы правил назначения заданий.…”
Section: исследовательские статьиunclassified