2022
DOI: 10.48550/arxiv.2203.15162
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Distribution Evolutionary Algorithm for Graph Coloring

Abstract: Graph Coloring Problem (GCP) is a classic combinatorial optimization problem that has a wide application in theoretical research and engineering. To address complicated GCPs efficiently, a distribution evolutionary algorithm based on population of probability models (DEA-PPM) is proposed. Based on a novel representation of probability model, DEA-PPM employs a Gaussian orthogonal search strategy to explore the probability space, by which global exploration can be realized using a small population. With assistan… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?