2023
DOI: 10.3390/fi15040122
|View full text |Cite
|
Sign up to set email alerts
|

A DNN Architecture Generation Method for DDoS Detection via Genetic Alogrithm

Abstract: Nowdays, DNNs (Deep Neural Networks) are widely used in the field of DDoS attack detection. However, designing a good DNN architecture relies on the designer’s experience and requires considerable work. In this paper, a GA (genetic algorithm) is used to automatically generate the DNN architecture for DDoS detection to minimize human intervention in the design process. Furthermore, given the complexity of contemporary networks and the diversity of DDoS attacks, the objective of this paper is to generate a DNN m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 38 publications
0
2
0
2
Order By: Relevance
“…It employs a loss function to quantify the discrepancy between the network's predicted output and the actual target. Subsequently, the network undergoes iterative training through the application of the backpropagation algorithm and an optimization technique, iterating extensively to fine-tune the network weights and thereby minimize the loss function [21].…”
Section: Methods Modelmentioning
confidence: 99%
“…It employs a loss function to quantify the discrepancy between the network's predicted output and the actual target. Subsequently, the network undergoes iterative training through the application of the backpropagation algorithm and an optimization technique, iterating extensively to fine-tune the network weights and thereby minimize the loss function [21].…”
Section: Methods Modelmentioning
confidence: 99%
“…Traditional machine learning SVM [31][32][33][34][35] Decision Tree [36][37][38] KNN [38][39][40][41] Naive Bayes [38,[42][43][44] Random Forest [36][37][38] Deep learning SOM [41,45,46] ANN [47][48][49] LSTM [48][49][50] DNN [51][52][53] RNN [50,53] The SVM algorithm is a binary classification model utilized for distinguishing between normal and abnormal data in the context of DDoS attack detection based on traffic characteristics. Based on the traffic characteristics observed in the SDN network environment, the SVM detection algorithm is employed to gather input feature vectors in order to develop an algorithm for detecting malicious behavior within the network.…”
Section: Algorithm Classification Algorithm Referencesmentioning
confidence: 99%
“…Pada penelitian yang menggunakan machine learning untuk deteksi DDoS, digunakan sejumlah data yang diekstraksi oleh para ahli untuk melatih dan menguji model guna meningkatkan kinerja. Sedangkan pada penelitian yang menggunakan deep learning untuk penelitian DDoS biasanya memungkinkan model untuk memilih fitur terbaik untuk melatih dan menguji model pada data tersebut [7].…”
Section: Pendahuluanunclassified
“…Pemilihan fitur atau seleksi fitur merupakan langkah penting dalam pembelajaran mesin yang melibatkan pemilihan sekelompok fitur yang penting dari sekumpulan fitur yang lebih besar untuk meningkatkan efisiensi model [7]. Proses ini sangat mempengaruhi kinerja model dengan mengurangi kompleksitas dimensi, meningkatkan kemampuan generalisasi, mempercepat proses pembelajaran, dan meningkatkan kemampuan untuk menjelaskan model [7].…”
Section: Pendahuluanunclassified