In this paper, a non-tensor product method for constructing three-dimension (3D) mother wavelets by back-projecting two dimension (2D) mother wavelets is presented. We have proved that if a 2D mother wavelet satisfies certain conditions, the back-projection of the 2D mother wavelet is a 3D mother wavelet. And the construction instances of 3D Mexican-hat wavelet and 3D Meyer wavelet are given. These examples imply that we can get some new 3D mother wavelets from known 1D or 2D mother wavelets by using back-projecting method. This method inaugurates a new approach for constructing non-tensor product 3D wavelet. In addition, the non-tensor product 3D Mexican-hat wavelet is used for detecting the edge of two 3D images in our experimental section. Compared with the Mallat's maximum wavelet module approach which uses 3D directional wavelets, experimental results show it can obtain better outcome especial for the edge which the orientation is not along the coordinate axis. Furthermore, the edge is more fine, and the computational cost is much smaller. The non-tensor product mother wavelets constructed by using the method of this paper also can be widely used for compression, filtering and denoising of 3D images.