Treatment with genotoxic agents, such as platinum compounds, is still the mainstay therapeutical approach for the majority of cancers. Our understanding of the mechanisms of action of these drugs is however imperfect, and continuously evolving. Recent advances in the field highlighted single stranded DNA (ssDNA) gap accumulation as a potential determinant underlying cisplatin chemosensitivity, at least in some genetic backgrounds, such as BRCA mutations. Cisplatin-induced ssDNA gaps form upon the arrest of replication forks at sites of cisplatin adducts, and restart of DNA synthesis downstream of the lesion through repriming catalyzed by the PRIMPOL enzyme. Here, we show that PRIMPOL overexpression in otherwise wildtype cells results in accumulation of cisplatin-induced ssDNA gaps without sensitizing cells to cisplatin, suggesting that ssDNA gap accumulation does not confer cisplatin sensitivity in BRCA-proficient cells. To understand how ssDNA gaps may cause cellular sensitivity, we employed CRISPR-mediated genome-wide genetic screening to identify factors which enable the cytotoxicity of cisplatin-induced ssDNA gaps. We found that the helicase HELQ specifically suppresses cisplatin sensitivity in PRIMPOL-overexpressing cells, and this is associated with reduced ssDNA accumulation. We moreover identify RAD52 as a mediator of this pathway, and show that RAD52 promotes ssDNA gap accumulation through a BRCA-mediated mechanism. Our work identified the HELQ-RAD52-BRCA axis as a regulator of ssDNA gap processing, shedding light on the mechanisms of cisplatin sensitization in cancer therapy.