Hypothesis
Using automated methods, vital anatomy of the middle ear can be identified in CT scans and used to create 3-D renderings.
Background
While difficult to master, clinicians compile 2-D data from CT scans to envision 3-D anatomy. Computer programs exist which can render 3-D surfaces but are limited in that ear structures, e.g. the facial nerve, can only be visualized after time-intensive manual identification for each scan. Herein, we present results from novel computer algorithms which automatically identify temporal bone anatomy (external auditory canal, ossicles, labyrinth, facial nerve, and chorda tympani).
Methods
An atlas of the labyrinth, ossicles, and auditory canal was created by manually identifying the structures in a “normal” temporal bone CT scan. Using well accepted techniques, these structures were automatically identified in (n=14) unknown CT images by deforming the atlas to match the unknown volumes. Another automatic localization algorithm was implemented to identify the position of the facial nerve and chorda tympani. Results were compared to manual identification by measuring false positive and false negative error.
Results
The labyrinth, ossicles, and auditory canal were identified with mean errors below 0.5 mm. The mean errors in facial nerve and chorda tympani identification were below 0.3 mm.
Conclusions
Automated identification of temporal bone anatomy is achievable. The presented combination of techniques was successful in accurately identifying temporal bone anatomy. These results were obtained in less than 10 minutes per patient scan using standard computing equipment.