Objective. Extracellular electrophysiology has been widely applied to neural circuit dissections. However, long-term multiregional recording in free-moving mice remains a challenge. Low-cost and easy-fabrication of elaborate drivable electrodes is required for their prevalence. Approach. A three-layer nested construct (OD ~1.80 mm, length ~10 mm, <0.1g) was recruited as a drivable component, which consisted of an ethylene-vinyl acetate copolymer (EVA) heat-shrinkable tube, non-closed loop ceramic bushing, and stainless ferrule with a bulge twining silver wire. The supporting and working components were equipped with drivable components to be assembled into a drivable microwire electrode array with a nested structure (drivable MEANS). Two drivable microwire electrode arrays were independently implanted for chronic recording in different brain areas at respective angles. An optic fiber was easily loaded into the drivable MEANS to achieve optogenetic modulation and electrophysiological recording simultaneously. Main results. The drivable MEANS had lightweight (~ 0.37 g), small (~ 15 mm ×15 mm × 4 mm), and low cost (≤ $64.62). Two drivable MEANS were simultaneously implanted in mice, and high-quality electrophysiological recordings could be applied ≥ 5 months after implantation in freely behaving animals. Electrophysiological recordings and analysis of the lateral septum (LS) and lateral hypothalamus (LH) in food-seeking behavior demonstrated that our drivable MEANS can be used to dissect the function of neural circuits. An optical fiber-integrated drivable MEANS (~ 0.47 g) was used to stimulate and record LS neurons, which suggested that changes in working components can achieve more functions than electrophysiological recordings, such as optical stimulation, drug release, and calcium imaging. Significance. Drivable MEANS is an easily fabricated, lightweight drivable microwire electrode array for multiple-region electrophysiological recording in free-moving mice. Our design is likely to be a valuable platform for both current and prospective users, as well as for developers of multifunctional electrodes for free-moving mice.