The inductance of a winding segmented permanent magnet linear synchronous motor (WS-PMLSM) is affected by winding disconnection and coupling length variation, which makes the variation of inductance more complicated, and this paper proposes incremental inductance, apparent inductance, and positional inductance to reveal this phenomenon, which gives a theoretical basis for mathematical modeling and thrust fluctuation suppression. First, an analytical approach is used to derive a fully coupled state model using the magnetomotive force and specific permeability function. Second, the domain of the specific permeability function is extended and the inductance expressions are calculated for the whole moving range. Finally, the inductance of the prototype WS-PMLSM with a two-phase winding is experimentally verified, and it is proposed that the effects of the three inductive components on the system should be considered comprehensively when implementing control of the WS-PMLSM.