Methanosarcina mazei and related mesophilic archaea are the only organisms fermenting acetate, methylamines, and methanol to methane and carbon dioxide, contributing significantly to greenhouse gas production. The biochemistry of these metabolic processes is well studied, and genome sequences are available, yet little is known about the overall transcriptional organization and the noncoding regions representing 25% of the 4.01-Mb genome of M. mazei. We present a genome-wide analysis of transcription start sites (TSS) in M. mazei grown under different nitrogen availabilities. Pyrosequencing-based differential analysis of primary vs. processed 5 ends of transcripts discovered 876 TSS across the M. mazei genome. Unlike in other archaea, in which leaderless mRNAs are prevalent, the majority of the detected mRNAs in M. mazei carry long untranslated 5 regions. Our experimental data predict a total of 208 small RNA (sRNA) candidates, mostly from intergenic regions but also antisense to 5 and 3 regions of mRNAs. In addition, 40 new small mRNAs with ORFs of <30 aa were identified, some of which might have dual functions as mRNA and regulatory sRNA. We confirmed differential expression of several sRNA genes in response to nitrogen availability. Inspection of their promoter regions revealed a unique conserved sequence motif associated with nitrogen-responsive regulation, which might serve as a regulator binding site upstream of the common IIB recognition element. Strikingly, several sRNAs antisense to mRNAs encoding transposases indicate nitrogen-dependent transposition events. This global TSS map in archaea will facilitate a better understanding of transcriptional and posttranscriptional control in the third domain of life.Methanosarcina mazei strain Gö1 is a representative methaneproducing archaeon of ecologic significance because of its role in biogenic methane production in various anaerobic habitats on Earth (1). The genome sequences of M. mazei and its close relatives Methanosarcina acetivorans and Methanosarcina barkeri have recently become available and have revealed an unexpected low proportion of coding region (74.2% in M. acetivorans, 75.15% in M. mazei, and 79.2% in M. barkeri) (2-4). The biochemical basis of methanogenesis has been analyzed in considerable detail (5, 6). In contrast, little is known about global regulatory networks that ensure survival in periods of nutrient starvation or stress in this important group of archaea. More than 50 predicted transcriptional regulators were annotated in the genome of M. mazei. Strikingly, most of them seem to be closely related to bacterial proteins (2), whereas the basic components of the archaeal transcription and translation machineries generally are more similar to those of eukaryotes (7). A recent genetic study (8) discovered the first global transcriptional regulator of M. mazei, the nitrogen regulator NrpR, which was experimentally demonstrated to globally repress transcription of nitrogen fixation and assimilation genes in response to the nitrogen source.Bes...