Night landscapes are a key area of monitoring and security as information in pictures caught on camera is not comprehensive. Data augmentation gives these limited datasets the most value. Considering night driving and dangerous events, it is important to achieve the better detection of people at night. This paper studies the impact of different data augmentation methods on target detection. For the image data collected at night under limited conditions, three different types of enhancement methods are used to verify whether they can promote pedestrian detection. This paper mainly explores supervised and unsupervised data augmentation methods with certain improvements, including multi-sample augmentation, unsupervised Generative Adversarial Network (GAN) augmentation and single-sample augmentation. It is concluded that the dataset obtained by the heterogeneous multi-sample augmentation method can optimize the target detection model, which can allow the mean average precision (mAP) of a night image to reach 0.76, and the improved Residual Convolutional GAN network, the unsupervised training model, can generate new samples with the same style, thus greatly expanding the dataset, so that the mean average precision reaches 0.854, and the single-sample enhancement of the deillumination can greatly improve the image clarity, helping improve the precision value by 0.116.