There is an increasing need for aperture antenna devices that incorporate multifunctional capability. One popular solution to this problem is the use of an “active aperture antenna” that is able to vary the direction and shape of its radiation pattern by using actuators to alter the shape of the reflector. This study focuses on the use of a pre-curved piezoceramic actuator, referred to as a THUNDER actuator, to change the shape of a prototype reflector. These actuators offer greater force, deflection and higher strength than traditional PZT actuators, while maintaining cost effectiveness. In this study the design of a prototype antenna structure that can accommodate deflection experiments and far-field radiation pattern tests is presented. The theoretical relationship between the dish deflection and the input voltage is established in two stages. In the first stage, the deflection at the end of the actuator is determined using a combination of Hamilton’s principle and laminated composite curved beam theory. The piezoelectric properties of the actuator are also considered during this stage. In the second stage, the deflection at the tip of the dish is calculated using geometric relationships, with the assumption that the remaining portion of the dish moves as a rigid body. The resulting deflection equations yield results that closely match the experimental quasi-static deflection results for a given input voltage, despite the presence of hysteresis. A dynamic model for a THUNDER actuator is developed based on experimental frequency response measurements. Positive Positioned Feedback (PPF) control is implemented on the system, in order to reduce position overshoot and oscillations in the transient response of the structure. The controller yields an improvement in the transient response in both simulation and experiments. Finally, the controlled system is utilized to transmit radiation in the far field.