A dual-scale hybrid prediction model for UAV demand power: Based on VMD and SSA optimization algorithm
Bin Zhang,
Jianqi Li,
Zewen Li
et al.
Abstract:The prediction of power demand for unmanned aerial vehicles (UAV) is an essential basis to ensure the rational distribution of the energy system and stable economic flight. In order to accurately predict the demand power of oil-electric hybrid UAV, a method based on variational mode decomposition (VMD) and Sparrow Search Algorithm (SSA) is proposed to optimize the hybrid prediction model composed of long-short term memory (LSTM) and Least Squares Support Vector Machine (LSSVM). Firstly, perform VMD decompositi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.