2024
DOI: 10.1002/cpa.22240
|View full text |Cite
|
Sign up to set email alerts
|

A dual‐space multilevel kernel‐splitting framework for discrete and continuous convolution

Shidong Jiang,
Leslie Greengard

Abstract: We introduce a new class of multilevel, adaptive, dual‐space methods for computing fast convolutional transformations. These methods can be applied to a broad class of kernels, from the Green's functions for classical partial differential equations (PDEs) to power functions and radial basis functions such as those used in statistics and machine learning. The DMK (dual‐space multilevel kernel‐splitting) framework uses a hierarchy of grids, computing a smoothed interaction at the coarsest level, followed by a se… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 64 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?