2020
DOI: 10.1016/j.cej.2020.125701
|View full text |Cite
|
Sign up to set email alerts
|

A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1−Br heterojunction with enhanced visible-light photocatalytic activity

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
43
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 111 publications
(45 citation statements)
references
References 65 publications
2
43
0
Order By: Relevance
“…S‐scheme photocatalysts demonstrate efficient performances for reactive oxygen species (ROS) evolution in pollutant decomposition and sterilization processes, e.g., CoFe 2 O 4 /g‐C 3 N 4 , 0D/2D CeO 2 /g‐C 3 N 4 , S‐pCN/WO 2.72 , Sb 2 WO 6 /g‐C 3 N 4 , OVs‐Bi 2 O 3 /Bi 2 SiO 5 , In 2 O 3– x (OH) y /Bi 2 MoO 6 , and BP/BiOBr, Bi 2 MoO 6 /CdS, BiOCl/CuBi 2 O 4 , Bi 2 WO 6 /g‐C 3 N 4 , SnNb 2 O 6 /Ag 3 VO 4 , BiOBr/BiOAC 1–– x Br x , BiOI/Bi 2 WO 6 , Bi 2 O 3 /TiO 2 , In 2 S 3 /Bi 2 O 2 CO 3 , ZnO–V 2 O 5 –WO 3 , S‐doped g‐C 3 N 4 /TiO 2 , BiVO 4 /Ag 3 VO 4 , CdS/UiO‐66, α‐Fe 2 O 3 /Bi 2 WO 6 , Cd 0.5 Zn 0.5 S/g‐C 3 N 4 , Sb 2 WO 6 /BiOBr, and Bi 2 MoO 6 /g‐C 3 N 4 /Au. [ 28,76–97 ] Li et al utilized thin black phosphorus (BP) to couple BiOBr nanosheets to construct S‐scheme BP/BiOBr nanoheterojunction for H 2 O 2 evolution, [ 80 ] as shown in Figure a. H 2 O 2 evolution rate over 10BP/BiOBr is 2.6 times than that over BiOBr.…”
Section: S‐scheme Photocatalystsmentioning
confidence: 99%
“…S‐scheme photocatalysts demonstrate efficient performances for reactive oxygen species (ROS) evolution in pollutant decomposition and sterilization processes, e.g., CoFe 2 O 4 /g‐C 3 N 4 , 0D/2D CeO 2 /g‐C 3 N 4 , S‐pCN/WO 2.72 , Sb 2 WO 6 /g‐C 3 N 4 , OVs‐Bi 2 O 3 /Bi 2 SiO 5 , In 2 O 3– x (OH) y /Bi 2 MoO 6 , and BP/BiOBr, Bi 2 MoO 6 /CdS, BiOCl/CuBi 2 O 4 , Bi 2 WO 6 /g‐C 3 N 4 , SnNb 2 O 6 /Ag 3 VO 4 , BiOBr/BiOAC 1–– x Br x , BiOI/Bi 2 WO 6 , Bi 2 O 3 /TiO 2 , In 2 S 3 /Bi 2 O 2 CO 3 , ZnO–V 2 O 5 –WO 3 , S‐doped g‐C 3 N 4 /TiO 2 , BiVO 4 /Ag 3 VO 4 , CdS/UiO‐66, α‐Fe 2 O 3 /Bi 2 WO 6 , Cd 0.5 Zn 0.5 S/g‐C 3 N 4 , Sb 2 WO 6 /BiOBr, and Bi 2 MoO 6 /g‐C 3 N 4 /Au. [ 28,76–97 ] Li et al utilized thin black phosphorus (BP) to couple BiOBr nanosheets to construct S‐scheme BP/BiOBr nanoheterojunction for H 2 O 2 evolution, [ 80 ] as shown in Figure a. H 2 O 2 evolution rate over 10BP/BiOBr is 2.6 times than that over BiOBr.…”
Section: S‐scheme Photocatalystsmentioning
confidence: 99%
“…However, the electrons from TiO 2 and WO 3 conduction bands (CB) cannot be involved in •O − 2 generation, and the holes from Cu 2 S valence band (+0.92 eV) cannot produce •OH, owing to their potential. Consequently, some of those charges which are not useful for photocatalytic reaction will recombine [ 47 , 48 ]. The useful electrons from the Cu 2 S valence band (−0.4 eV), as well as the holes from TiO 2 (+2.9 eV) and WO 3 (+3.1 eV) valence bands, have a stronger redox ability and are efficiently separated by the electric field in the charged space region.…”
Section: Resultsmentioning
confidence: 99%
“…The photocatalytic removal of ciprofloxacin and TC was evaluated using WO 3 (E G = 2.34 eV)/g-C 3 N 4 (E G = 2.65 eV) nanosheets [ 77 ] and BiOBr (E G = 2.83 eV) nanosheets/BiOAc 1−x Br x (E G = 3.28 eV) flower-like [ 78 ] S-scheme heterostructure. The WO 3 /g-C 3 N 4 sample obtained by the template-assisted polymer method exhibited a 43.03 m 2 /g active surface area using the combined advantage of a g-C 3 N 4 thin planar structure and WO 3 oxygen deficit, which enhanced the charge transfer and increased the quantum efficiency.…”
Section: S-scheme Heterostructure Photocatalytic Applicationsmentioning
confidence: 99%