Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Carbonate reservoirs in Iran are the most important and main sources of oil and gas production. Hydrocarbon flow rates from carbonate reservoirs heavily rely on the development of natural fractures. This study focuses on the role of natural fractures on reservoir quality considering the Sarvak carbonate reservoir (southwest Iran) as the second most important oil reservoir of Iran. To identify small-scale fractures around the borehole walls, cores description and image logs were utilized. Due to high cost of coring, lack of orientation and low core recovery in fractured zones indirect methods based on image logs and conventional well logs were exploited for fracture characterizations. For this purpose, a complete set of well data including image logs (FMI), well-log-derived porosity and permeability data together with petrophysical logs were employed. Interpretation of image logs allows different types of natural structures such as open, vuggy, partly-filled and filled fractures, bedding planes and stylolites to be identified. Comparisons between the petrophysical-log and image-log interpretations provide useful relationships with reservoir characteristics. Neutron and sonic logs show a direct relationship with fracture porosity, while the density log displays an inverse correlation with fracture porosity. Neutron-density and neutron-sonic cross-plots show that the dominant lithology of the studied well is limestone with minor fractions of dolomite and shale. Total porosity ranges from 2 to 30%, while the contribution of secondary porosity, on average, is below 3%. Relationships between fracture-frequency diagrams and reservoir permeability show that high permeability zones are well correlated with the high frequencies of open and vuggy fractures and zones that have flowed oil and associated gas in production tests. Natural fracture characterization based on systematic and integrated interpretations of image logs and petrophysical data can play an important role in optimizing field development, resource recovery and production from the Sarvak reservoir. Once calibrated, this method also offers potential as an exploration tool.
Carbonate reservoirs in Iran are the most important and main sources of oil and gas production. Hydrocarbon flow rates from carbonate reservoirs heavily rely on the development of natural fractures. This study focuses on the role of natural fractures on reservoir quality considering the Sarvak carbonate reservoir (southwest Iran) as the second most important oil reservoir of Iran. To identify small-scale fractures around the borehole walls, cores description and image logs were utilized. Due to high cost of coring, lack of orientation and low core recovery in fractured zones indirect methods based on image logs and conventional well logs were exploited for fracture characterizations. For this purpose, a complete set of well data including image logs (FMI), well-log-derived porosity and permeability data together with petrophysical logs were employed. Interpretation of image logs allows different types of natural structures such as open, vuggy, partly-filled and filled fractures, bedding planes and stylolites to be identified. Comparisons between the petrophysical-log and image-log interpretations provide useful relationships with reservoir characteristics. Neutron and sonic logs show a direct relationship with fracture porosity, while the density log displays an inverse correlation with fracture porosity. Neutron-density and neutron-sonic cross-plots show that the dominant lithology of the studied well is limestone with minor fractions of dolomite and shale. Total porosity ranges from 2 to 30%, while the contribution of secondary porosity, on average, is below 3%. Relationships between fracture-frequency diagrams and reservoir permeability show that high permeability zones are well correlated with the high frequencies of open and vuggy fractures and zones that have flowed oil and associated gas in production tests. Natural fracture characterization based on systematic and integrated interpretations of image logs and petrophysical data can play an important role in optimizing field development, resource recovery and production from the Sarvak reservoir. Once calibrated, this method also offers potential as an exploration tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.