2014
DOI: 10.1016/j.jfineco.2014.04.002
|View full text |Cite
|
Sign up to set email alerts
|

A dynamic limit order market with fast and slow traders

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

3
36
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 233 publications
(40 citation statements)
references
References 34 publications
3
36
0
1
Order By: Relevance
“…These models are consistent with our empirical finding that HFTs submit the majority of limit orders . Also consistent with our empirical results, GPR and Hoffmann () find that limit orders play a significant role in price discovery…”
supporting
confidence: 92%
See 1 more Smart Citation
“…These models are consistent with our empirical finding that HFTs submit the majority of limit orders . Also consistent with our empirical results, GPR and Hoffmann () find that limit orders play a significant role in price discovery…”
supporting
confidence: 92%
“…Theoretical models of limit order books provide insights into the roles that different orders by different traders play in price discovery (e.g., Goettler, Parlour, and Rajan, [GPR]; Hoffmann, ) . These models focus on traders’ choice between market orders and limit orders based on traders’ information and the state of the limit order book.…”
mentioning
confidence: 99%
“…And, Manela and Moreira () use news to form an uncertainty index and show that it is related to expected returns. Theoretical models of algorithmic trading (e.g., Hoffman (), Foucault, Hombert, and Rosu (), Du and Zhu ()) focus on this ability to react to news announcements faster for individual firms. By contrast, our results suggest that the LASSO's success comes from quickly identifying the unexpected consequences of news announcements for other firms.…”
mentioning
confidence: 99%
“…See Cartea and Penalva (), Jovanovic and Menkveld (), Pagnotta and Philippon (), Aït‐Sahalia and Saglam (), Budish, Cramton, and Shim (), Biais, Foucault, and Moinas (), Du and Zhu (), Hoffmann (), and Weller (), among others.…”
mentioning
confidence: 99%