2015
DOI: 10.1016/j.asoc.2015.03.021
|View full text |Cite
|
Sign up to set email alerts
|

A dynamic simulation–optimization model for adaptive management of urban water distribution system contamination threats

Abstract: Abstract. Urban water distribution systems hold a critical and strategic position in preserving public health and industrial growth. Despite the ubiquity of these urban systems, aging infrastructure, and increased risk of terrorism, decision support models for a timely and adaptive contamination emergency response still remain at an undeveloped stage. Emergency response is characterized as a progressive, interactive, and adaptive process that involves parallel activities of processing streaming information and… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
10
0
1

Year Published

2015
2015
2022
2022

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 35 publications
(11 citation statements)
references
References 51 publications
0
10
0
1
Order By: Relevance
“…Metode ini juga telah digunakan oleh peneliti-peneliti sebelumnya untuk memodelkan pengelolaan air baik dari aspek kuantitas (Nozari & Liaghat, 2014;Sun et al, 2017) maupun kualitas (Hassanzadeh et al, 2019;Liu et al, 2015;Lukman et al, 2019;Wang et al, 2016). Tujuan pemodelan yang dilakukan pada umumnya adalah untuk mendapatkan model pengelolaan sumberdaya air yang lestari (Primadian N et al, 2016;Tian et al, 2020 Tahapan pemodelan dilakukan dengan mengadaptasi metode pemodelan system dynamics, seperti dilakukan beberapa penelitian terdahulu (Rasekh & Brumbelow, 2015;Sun et al, 2017;Wei et al, 2016) yakni uji pembandingan rata-rata data hasil simulasi terhadap rata-rata data referensi. Data yang digunakan adalah data referensi dan simulasi jumlah penduduk, dengan menggunakan rumus: dengan kriteria toleransi kesalahan maksimum 30 %.…”
Section: Metodologiunclassified
“…Metode ini juga telah digunakan oleh peneliti-peneliti sebelumnya untuk memodelkan pengelolaan air baik dari aspek kuantitas (Nozari & Liaghat, 2014;Sun et al, 2017) maupun kualitas (Hassanzadeh et al, 2019;Liu et al, 2015;Lukman et al, 2019;Wang et al, 2016). Tujuan pemodelan yang dilakukan pada umumnya adalah untuk mendapatkan model pengelolaan sumberdaya air yang lestari (Primadian N et al, 2016;Tian et al, 2020 Tahapan pemodelan dilakukan dengan mengadaptasi metode pemodelan system dynamics, seperti dilakukan beberapa penelitian terdahulu (Rasekh & Brumbelow, 2015;Sun et al, 2017;Wei et al, 2016) yakni uji pembandingan rata-rata data hasil simulasi terhadap rata-rata data referensi. Data yang digunakan adalah data referensi dan simulasi jumlah penduduk, dengan menggunakan rumus: dengan kriteria toleransi kesalahan maksimum 30 %.…”
Section: Metodologiunclassified
“…Considering the uncertainty of user water demand, Yan et al [12,13] applied various models to simulate user water demand and then employed a genetic algorithm to solve a pollution source positioning problem with uncertain water demand. Rasekh and Brumbelow [14] proposed dynamic simulation optimization model taking into account a number of uncertainties that lead to unpredictable time-varying system behaviour in the real world. In the simulation-optimization method, the optimization algorithm is used as the optimizer.…”
Section: Introductionmentioning
confidence: 99%
“…The universality of urban trends, old structures and increasing terrorism risks need proper modeling for giving response to any type of emergency which is unfortunately not very much developed. When giving response to any emergency situation there should be parallel activities that rely on the processing of continues information as well as formulating targeted response actions [4].…”
Section: Introductionmentioning
confidence: 99%