Electric cars have evolved into a game-changing technology in recent years. A Battery Management System (BMS) is the most significant aspect of an Electric Vehicle (EV) in the automotive sector since it is regarded as the brain of the battery pack. Lithium-ion batteries have a large capacity for energy storage. The BMS is in charge of controlling the battery packs in electric vehicles. The major role of the BMS is to accurately monitor the batteryâs status, which assures dependable operation and prolongs battery performance. The BMSâs principal job is to keep track, estimate, and balance the battery packâs cells. The major goals of this work are to keep track of battery characteristics, estimate SoC using three distinct approaches, and balance cells. Coulomb Counting, Extended Kalman Filter, and Unscented Kalman Filter are the three algorithms that will be implemented. Current is used as an input parameter to implement the coulomb counting method. In contrast to voltage and temperature, the current value is taken into account by the Extended and Unscented Kalman Filters. To calculate the state transition and measurement update matrix, these parameters are considered. This matrix will then be used to calculate SoC. Results of all the algorithms will be comparatively analyzed. MATLAB R2020a software is used for the simulation of different algorithms and SoC calculation. Three states of BMS are considered and they are Discharging phase, the Standby/resting phase, and the Charging phase. At the beginning of the Simulation, the SoC values of the cells were 80%. At the end of simulation maximum values of SoC of Coulomb counting, Extended Kalman Filter (EKF), and Unscented Kalman Filter (UKF) reached are 100%, 98.74%, and 98.46% respectively. After SoC Estimation, Cell balancing is also performed over 6 cells of the battery pack.