"A dynamic contact problem is considered in the paper. The material behavior is described by electro-elastic-viscoplastic law with piezoelectric effects. The body is in contact with damage and an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. The damage of the material caused by elastic deformations. The evolution of the damage is described by an inclusion of parabolic type. The problem is formulated as a coupled system of an elliptic variational inequality for the displacement, variational equation for the electric potential and a parabolic variational inequality for the damage. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments."