We study a moduli space of ASD connections over S 3 × R. We consider not only finite energy ASD connections but also infinite energy ones. So the moduli space is infinite dimensional in general. We study the (local) mean dimension of this infinite dimensional moduli space. We show the upper bound on the mean dimension by using a "Runge-approximation" for ASD connections, and we prove its lower bound by constructing an infinite dimensional deformation theory of periodic ASD connections.