Geometric torsions are torsions of acyclic complexes of vector spaces consisting of differentials of geometric quantities assigned to the elements of a manifold triangulation. We use geometric torsions to construct invariants for a three-dimensional manifold with a triangulated boundary. These invariants can be naturally combined into a vector, and a change of the boundary triangulation corresponds to a linear transformation of this vector. Moreover, when two manifolds are glued at their common boundary, these vectors undergo scalar multiplication, i.e., they satisfy Atiyah's axioms of a topological quantum field theory.