Minimizing the impact of electromagnetic radiation (EMR) holds paramount importance in safeguarding individuals who frequently utilize electrical and electronic devices. Electrically conductive textiles, which possess specialized EMR shielding features, present a promising solution to mitigate the risks related to EMR. Furthermore, these textile-based shielding materials could find application as radar-absorbing materials in stealth technology, emphasizing the need for substantial absorption capabilities in shielding mechanisms. In this study, various textile-based materials with an electrically conductive coating that contain the conjugated polymer system poly(3,4-ethylene-dioxythiophene)-polystyrene sulfonate (PEDOT:PSS) were prepared and investigated. The influence of the textile substrate structural parameters, coating deposit, and coating method on their microwave properties—transmission, reflection, and absorption—was investigated. Reflection and transmission measurements were conducted within a frequency range of 2 to 18 GHz. These measurements revealed that, for the tested samples, the shielding properties are determined by the combined effect of reflection and absorption. However, the role of these two parameters varies across the tested frequency range. It was defined that for fabrics coated on one side, better reflection reduction is obtained when the shielding effectiveness (SE) is below |20| dB. It was found that by controlling the coating deposition on the fabric, it is possible to fine-tune the electrical properties to a certain extent, thereby influencing the microwave properties of the coated fabrics. The studies of prepared samples have shown that reflection and transmission parameters depend not only on the type and quantity of conductive paste applied to the fabric but also on the fabric’s construction parameters and the coating technique used. It was found that the denser the substrate used for coating, the more conductive paste solidifies on the surface, forming a thicker coat on the top. For conductive fabrics with the same substrate to achieve a particular SE value using the knife-over-roll coating technology, the required coating deposit amount is considerably lower as compared with the deposit necessary in the case of screen printing: for the knife-over-roll-coated sample to reach SE 15 dB, the required deposit is approximately 14 g/m2; meanwhile, for a sample coated via screen printing, this amount rises to 23 g/m2.