Transformation into electric or photoelectric functional composite from non-conjugated polymers is a great challenge due to the presence of a large number of locative states. In this paper, carbon nanofiber was synthesized via hydrothermal carbonization utilizing carboxymethyl cellulose as a precursor, and the carbon nanofiber/Cu nanocomposite was constructed for defect passivation. The results indicated that the resulting nanocomposites exhibited good absorbance in visible light range and NIR (near-infrared). The photoconductive responses to typical weak visible light (650 nm et al.) and NIR (808, 980, and 1064 nm) were studied based on Au gap electrodes on flexible polymer substrates. The results exhibited that the nanocomposite’s solid thick film showed photocurrent-switching behaviors to visible light and NIR, the switch-ratio was depending on the wavelengths and power of incident lights. The positive and negative photoconductance responses phenomenon was observed in different compositions and changing excited wavelengths. Their photophysical mechanisms were discussed. This illustrated that the nanocomposites easily produce free electrons and holes via low power of incident light. Free electrons and holes could be utilized for different purposes in multi-disciplinary fields. It would be a potential application in broadband flexible photodetectors, artificial vision, simulating retina, and bio-imaging from visible light to NIR. This is a low-cost and green approach to obtain nanocomposite exhibiting good photocurrent response from the visible range to NIR.