Federated learning (FL) has emerged as a decentralized, cutting-edge framework for training models across distributed devices, such as smartphones, IoT devices, and local servers while preserving data privacy and security. FL allows devices to collaboratively learn from shared models without exchanging sensitive data, significantly reducing privacy risks. With these benefits, the deployment of FL over wireless communication systems has gained substantial attention in recent years. However, implementing FL in wireless environments poses significant challenges due to the unpredictable and fluctuating nature of wireless channels. In particular, the limited energy resources of mobile and IoT devices, many of which operate on constrained battery power, make energy management a critical concern. Optimizing energy efficiency is therefore crucial for the successful deployment of FL in wireless networks. However, existing reviews on FL predominantly focus on framework design, wireless communication, and security/privacy concerns, while paying limited attention to the system’s energy consumption. To bridge this gap, this article delves into the foundational principles of FL and highlights energy-efficient strategies tailored for various wireless architectures. It provides a comprehensive overview of FL principles and introduces energy-efficient designs, including resource allocation techniques and communication architectures, tailored to address the unique challenges of wireless communications. Furthermore, we explore emerging technologies aimed at enhancing energy efficiency and discuss future challenges and opportunities for continued research in this field.