Sensing plays a vital role in enabling smart cities. The mobile surveillance of different sectors, the retransmission of radio signals, and package delivery are the main applications conducted by unmanned vehicles in smart cities. Multiple unmanned vehicles or miniaturized real-time flying machines with onboard sensors, whether land- or air-based, communicate with each other to form a flying sensor network. Almost all of these machines are battery-operated. Therefore, power preservation is an extremely important factor to be taken into consideration. This paper proposes a power-aware biologically inspired secure autonomous routing protocol (P-BIOSARP) that depends on enhanced ant colony optimization (eACO). eACO autonomously and securely routes the data packet, and the power awareness maintains the power consumption of the flying sensor network. The novel intelligent power-aware routing protocol was implemented in network simulator 2 to perform a number of experiments with different scenarios. The scenarios included varying numbers of total nodes and mobile nodes, different packet rates, mobile source nodes, multiple mobile routing nodes, and, on the side of security, the injection of malicious nodes. The proposed protocol is compared with BIOSARP, E-BIOSARP, and SRTLD in terms of energy consumption, the delivery ratio, and traffic overhead. The analysis shows that the P-BIOSARP remarkably reduces energy consumption compared to other well-known protocols implemented on real testbeds.