Abstract:Let G be a non-compact, real semisimple Lie group. We consider maximal complexifications of G which are adapted to a distinguished oneparameter family of naturally reductive, left-invariant metrics. In the case of G = SL 2 (R) their realization as equivariant Riemann domains over G C = SL 2 (C) is carried out and their complex-geometric properties are investigated. One obtains new examples of non-univalent, non-Stein, maximal adapted complexifications.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.