2021
DOI: 10.1155/2021/9912387
|View full text |Cite
|
Sign up to set email alerts
|

A Family of Integrable Differential-Difference Equations: Tri-Hamiltonian Structure and Lie Algebra of Vector Fields

Abstract: Starting from a novel discrete spectral problem, a family of integrable differential-difference equations is derived through discrete zero curvature equation. And then, tri-Hamiltonian structure of the whole family is established by the discrete trace identity. It is shown that the obtained family is Liouville-integrable. Next, a nonisospectral integrable family associated with the discrete spectral problem is constructed through nonisospectral discrete zero curvature representation. Finally, Lie algebra of is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?