Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Building on the fully encapsulated architecture of liquid crystal (LC) coaxial phase shifters, which leverages noise-shielding advantages for millimeter-wave wideband reconfigurable applications, this study addresses the less-explored issue of low-frequency breakdown (LFB) susceptibility in modern full-wave solvers. Specifically, it identifies the vulnerability nexus between the tuning states (driven by low-frequency bias voltages) and the constitutive elements of LC-filled coaxial phase shifters—namely, the core line, housing grounding, and radially sandwiched tunable dielectrics—operating at millimeter-wave frequencies (60 GHz WiGig), microwave (1 GHz), and far lower frequency regimes (down to 1 MHz, 1 kHz, and 1 Hz) for long-wavelength or quasi-static conditions, with specialized applications in submarine communications and geophysical exploration. For completeness, the study also investigates the device state prior to LC injection, when the cavity is air-filled. Key computational metrics, such as effective permittivity and characteristic impedance, are analyzed. The results show that at 1 kHz, deviations in effective permittivity exceed four orders of magnitude compared to 1 GHz, while characteristic impedance exhibits deviations of three orders of magnitude. More critically, in the LFB regime, theoretical benchmarks from 1 MHz to 1 kHz and 1 Hz demonstrate an exponential increase in prediction error for both effective permittivity, rising from 16.8% to 1.5 × 104% and 1.5 × 107%, and for characteristic impedance, escalating from 8.1% to 1.15 × 103% and 3.9 × 104%, respectively. Consequently, the prediction error of the differential phase shift, minimal at 60 GHz (0.16%), becomes noticeable at 1 MHz (4.39%), increases sharply to 743.88% at 1 kHz, and escalates dramatically to 2.18 × 1010% at 1 Hz. The findings reveal a pronounced frequency asymmetry in LFB susceptibility for the LC coaxial phase shifter biased at extremely low frequencies.
Building on the fully encapsulated architecture of liquid crystal (LC) coaxial phase shifters, which leverages noise-shielding advantages for millimeter-wave wideband reconfigurable applications, this study addresses the less-explored issue of low-frequency breakdown (LFB) susceptibility in modern full-wave solvers. Specifically, it identifies the vulnerability nexus between the tuning states (driven by low-frequency bias voltages) and the constitutive elements of LC-filled coaxial phase shifters—namely, the core line, housing grounding, and radially sandwiched tunable dielectrics—operating at millimeter-wave frequencies (60 GHz WiGig), microwave (1 GHz), and far lower frequency regimes (down to 1 MHz, 1 kHz, and 1 Hz) for long-wavelength or quasi-static conditions, with specialized applications in submarine communications and geophysical exploration. For completeness, the study also investigates the device state prior to LC injection, when the cavity is air-filled. Key computational metrics, such as effective permittivity and characteristic impedance, are analyzed. The results show that at 1 kHz, deviations in effective permittivity exceed four orders of magnitude compared to 1 GHz, while characteristic impedance exhibits deviations of three orders of magnitude. More critically, in the LFB regime, theoretical benchmarks from 1 MHz to 1 kHz and 1 Hz demonstrate an exponential increase in prediction error for both effective permittivity, rising from 16.8% to 1.5 × 104% and 1.5 × 107%, and for characteristic impedance, escalating from 8.1% to 1.15 × 103% and 3.9 × 104%, respectively. Consequently, the prediction error of the differential phase shift, minimal at 60 GHz (0.16%), becomes noticeable at 1 MHz (4.39%), increases sharply to 743.88% at 1 kHz, and escalates dramatically to 2.18 × 1010% at 1 Hz. The findings reveal a pronounced frequency asymmetry in LFB susceptibility for the LC coaxial phase shifter biased at extremely low frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.