Abstract. Image filtering is one of the principal tools used in computer vision applications. Real systems store and manipulate high resolution images in compressed forms, therefore the implementation of the entire processing chain directly in the compressed domain became essential. This includes almost always linear filtering operations implemented by convolution. Linear image filtering implementation directly on the JPEG images is challenging for several reasons, including the complexity of transposing the pixel level convolution in the compressed domain, which may increase the processing time, despite avoiding the decompression. In this paper we propose a new computationally efficient solution for JPEG image filtering (as a spatial convolution between the input image and a given kernel) directly in the DCT based compressed domain. We propose that the convolution operation to be applied just on the periodical extensions of the DCT basis images, as an off-line processing, obtaining the filtered DCT basis images, which are used in data decompression. While this doesn't solve the near block boundaries filtering artefacts for large convolution kernels, for most practical cases, it provides good quality results at a very low computational complexity. These kind of implementations can run at real-time rates/ speeds and are suitable for developments of applications on digital cameras/ DSP/ FPGA.